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Abstract—This work studies communication over diffusion-
based molecular timing (DBMT) channels. The transmitter si-
multaneously releases multiple small information particles, where
the information is encoded in the time of release. The receiver
decodes the transmitted information based on the random time
of arrival of the information particles, which is represented as an
additive noise channel. For a DBMT channel, without flow, this
noise follows the Lévy distribution. Under this channel model,
the maximum-likelihood (ML) detector is derived and shown to
have high computational complexity. It is further shown that for
any additive noise channel with α-stable noise, α < 1, such as the
DBMT channel, a linear receiver is not able to take advantage
of the release of multiple information particles. Thus, instead
of the common low complexity linear approach, a new detector,
which is based on the first arrival (FA) among all the transmitted
particles, is derived. Numerical simulations indicate that for a
small to medium number of released particles, the performance
of the FA detector is very close to the performance of the ML
detector.

I. INTRODUCTION

Molecular communications (MC) is an emerging field in
which nano-scale devices communicate with each other via
chemical signaling, based on exchanging small information
particles [1]. To embed information in these particles one may
use the particle’s type, concentration, or the time of release,
as described in [2] and references therein. Particles can be
transported from the transmitter to the receiver via diffusion,
active transport, bacteria, and flow. Although this new field is
still in its infancy, several basic experimental systems serve as
a proof of concept for transmitting short messages at low bit
rates [3], [4].

This work focuses on receiver design for MC systems where
information is modulated through the time of release of the
information particles, which is reminiscent of pulse position-
modulation. A common assumption, which is accurate for
many sensors, is that after some time duration the particle is
absorbed by the receiver and removed from the environment.
In this case, the random delay until the particle arrives at
the receiver can be represented as an additive noise term.
For diffusion-based channels without flow, this additive noise
is Lévy-distributed [5], [6], [7], while for diffusion-based
channels with flow, this additive noise follows an inverse
Gaussian (IG) distribution [8].

At first glance, the cases of diffusion with and without flow
may seem similar; however, a closer look reveals a funda-
mental difference which stems from the different properties
of the additive noise. The Lévy distribution has a heavy tail,
namely, its tail decays polynomially, while the tail of the IG

distribution, similarly to the standard Gaussian distribution,
decays exponentially. Thus, traditional linear detection and
signal processing techniques, which work well in the presence
of Gaussian or IG noise, will not necessarily be efficient
in the presence of a Lévy-distributed noise. The observation
that channels with additive heavy-tailed noise require different
detection methods was already stated in [9] based on numerical
simulations. In this work we provide a rigorous proof that
linear processing cannot improve the detection performance
in channels corrupted by additive α-stable noise [10], [11],
with α < 1. In particular, linear processing cannot improve
the detection performance in DBMT channels, as the Lévy
distribution is α-stable with α = 1

2 .
Apart from the fact that the tails of the additive noise

decay slowly, in the considered diffusion-based timing channel
ordering in time is not preserved, namely, information particles
from consecutive channel uses may arrive out of order [12].
This gives rise to inter-symbol interference (ISI). In this work,
however, we focus on settings without ISI such as commu-
nication systems in which consecutive transmissions are far
enough apart, or a nano-scale sensor which occasionally sends
a limited number of bits, modulated in a single channel use,
to a centralized molecular controller, and then remains silent
for a long period. Hence, we study independent consecutive
channel uses without ISI such that each transmission can be
analyzed separately.

In this paper we study transmission over a diffusion-based
molecular timing (DBMT) channel without flow, assuming
that consecutive channel uses are independent and identically
distributed (i.i.d). We consider an MC system in which the
information is encoded in the time of release of the information
particles, where this time is selected out of a set with finite
cardinality. At each transmission M information particles
are simultaneously released at the time corresponding to the
current symbol, while the receiver’s objective is to detect
this transmission time. Note that M is constant and does not
change from one transmission to the next, i.e., information is
not encoded in the number of particles.

We derive the ML detection rule which, as expected, re-
quires relatively high computational complexity and therefore
is not necessarily suitable for nano-scale MC systems. This
motivates studying detectors with lower complexity. A com-
mon approach in traditional electromagnetic (EM) communi-
cation, which was also proposed in [8] for an MC system, is to
use a linear detector. We show that for any α−stable additive
noise with α < 1, and in particular for Lévy-distributed



noise, linear processing increases the dispersion of the noise
compared to the case of a single particle. As higher dispersion
is reminiscent of higher variance1, this increased dispersion
degrades the probability of correct detection, compared to the
case of a single particle. To the best of our knowledge this is
the first proof for the destructive effect of linear processing in
a MC system.

Since linear detectors cannot take advantage of the multiple
transmitted particles, we derive a new detector which is based
on the first arrival (FA) among the M information particles.
We show that the conditional probability densities of the
FA concentrate around the possible transmitted signal, thus,
increasing the probability of correct detection, compared to
the case of a single particle. Via numerical simulations we
show that for small-to-medium values of M , the performance
of the proposed FA detector is very close to that of the
optimal detector. On the other hand, for large values of M ,
ML significantly outperforms the FA detector, which agrees
with the fact that the FA is not a sufficient statistic for the
considered detection problem.

The rest of this paper is organized as follows. The problem
formulation is presented in Section II. The ML detector and
linear detection are studied in Section III. The FA detector
is derived in Section IV. Numerical results are presented in
Section V, and concluding remarks are provided in Section VI.

Notation: We denote the set of real numbers by R and the
set of positive real numbers by R+. Other than these sets,
we denote sets with calligraphic letters, e.g., X . We denote
RVs with upper case letters, e.g., X , and their realizations
with lower case letters, e.g., x. An RV takes values in the
set X , and we use |X | to denote the cardinality of a finite
set. We use fY (y) to denote the probability density function
(PDF) of a continuous RV Y on R, fY |X(y|x) to denote the
conditional PDF of Y given X , and FY |X(y|x) to denote the
conditional cumulative distribution function (CDF). We denote
vectors with boldface letters, e.g., x, where the kth element
of a vector x is denoted by xk. Finally, we use erfc (·) to
denote the complementary error function given by erfc(x) =

2√
π

∫∞
x
e−u

2

du and log(·) to denote the natural logarithm.

II. PROBLEM FORMULATION

A. System Model

We assume that the information particles themselves are
identical and indistinguishable at the receiver. Therefore, the
receiver can only use the time of arrival to decode the
intended message. The information particles propagate from
the transmitter to the receiver through some random prop-
agation mechanism (e.g. diffusion). We make the following
assumptions about the system:
A1) The transmitter perfectly controls the release time of each

information particle, and the receiver perfectly measures
the arrival times of the information particles. Moreover,
the transmitter and the receiver are perfectly synchronized
in time.

1Recall that the variance of α−stable, α < 1, random variable (RV) is∞.

A2) An information particle which arrives at the receiver is
absorbed and removed from the propagation medium.

A3) All information particles propagate independently of each
other, and their trajectories are random according to an
i.i.d. random process.2

Note that these assumptions are consistent with those made in
all previous works, in order to make the models tractable (see
[6] and the references therein).

Let X be a finite set of constellation points on the real
line: X , {ξ0, ξ1, . . . , ξL−1}, 0 ≤ ξ0 ≤ · · · ≤ ξL−1, and
let ξL−1 < Ts < ∞ denote the symbol duration. The kth

transmission takes place at time (K − 1)Ts + Xk, Xk ∈
X , k = 1, 2, . . . ,K. At this time, M information particles are
simultaneously released into the medium by the transmitter.
The transmitted information is encoded in the sequence {(K−
1)Ts + Xk}Kk=1, which is assumed to be independent of the
random propagation time of each of the information particles.
Let Yk denote an M -length vector consisting of the times of
arrival of each of the information particles released at time
(k−1)Ts+Xk. It follows that Yk,m > Xk,m = 1, 2, . . . ,M .
Thus, we obtain the following additive noise channel model:

Yk,m = (k − 1)Ts +Xk + Zk,m, (1)

where Zk,m, is a random noise term representing the propaga-
tion time of the mth particle of the kth transmission. Assump-
tion A3) implies that all the RVs Zk,m are independent.

In the channel model (1), particles may arrive out of order,
which results in a channel with memory. In this work, however,
we assume that each information particle arrives before the
next transmission takes place. This assumption can be formally
stated as:
A4) Ts is a fixed constant chosen to be large enough such that

the transmission times Xk obey Yk,m ≤ kTs with high
probability.3

With this assumption, we obtain an i.i.d. memoryless channel
model which can be written as:

Ym = X + Zm, m = 1, 2, . . . ,M. (2)

Assumption A4) implies that Ts is chosen such that consecu-
tive transmissions are sufficiently separated in time. We further
note that the model (2) also represents well the setting of a
nano-scale sensor which infrequently sends a symbol (which
conveys a limited number of bits) to a centralized molecular
controller, and then remains silent for a long period. Thus, the
effective communication channel is memoryless.

To simplify the presentation, we restrict our attention to
the case of binary modulations, i.e., X = {0,∆}, where the
constellation points are sent with equal probability. We note
that all the results and techniques derived in this work can be
easily extended to more than two elements in the set X , and to

2This is a reasonable assumption for many different propagation schemes in
molecular communication such as diffusion in dilute solutions, i.e., when the
number of particles released is much smaller than the number of molecules
of the solutions.

3Formally, let η be arbitrarily high probability, then we choose Ts such
that Pr{Yk,m < kTs} > η, k = 1, 2, . . . ,K,m = 1, 2, . . . ,M .



unequal a-priori probabilities. Let X̂ denote the estimation of
X at the receiver. Our objective is to design a (simple) receiver
which minimizes the probability of error Pε = Pr{X 6= X̂}.
Note that the above description of communication over an
MT channel is fairly general and can be applied to different
propagation mechanisms as long as Assumptions A1)–A4) are
not violated. Next, we describe the DBMT channel.

B. The DBMT Channel

In diffusion-based propagation, the released particles follow
a random Brownian path from the transmitter to the receiver.
In this case, to specify the random additive noise term Zm in
(2), we define a Lévy-distributed RV as follows:

Definition 1. Let Z be Lévy-distributed with location param-
eter µ and scale parameter c [10]. Then, its PDF given by:

fZ(z) =


√

c
2π(z−µ)3 exp

(
− c

2(z−µ)

)
, z > µ

0, z ≤ µ
, (3)

and its CDF given by:

FZ(z) =

erfc

(√
c

2(z−µ)

)
, z > µ

0, z ≤ µ
. (4)

Let d denote the distance between the transmitter and the
receiver, and D denote the diffusion coefficient of the in-
formation particles in the propagation medium. Following
along the lines of the derivations in [8, Sec. II], and using
the results of [13, Sec. 2.6.A], it can be shown that for 1-
dimensional pure diffusion, the propagation time of each of
the information particles follows a Lévy distribution, denoted
in this work by ∼ L (µ, c) with c = d2

2D and µ = 0. Thus,
Zm ∼ L (0, c),m = 1, 2, . . . ,M .

The Lévy distribution belongs to the class of stable distribu-
tions, discussed in the next subsection. For a detail description
we refer the reader to [10], [11].

C. Stable Distributions

Definition 2. An RV X has a stable distribution if for two
independent copies of X , X1 and X2, and for any constants
a1, a2 ∈ R+, there exists constants a3 ∈ R+ and a4 ∈ R such
that a1X1 + a2X2

d
= a3X + a4, where d

= denotes equality in
distribution.

Stable distributions can also be defined via their character-
istic function:

Definition 3. Let µ ∈ R, c ∈ R+, 0 < α ≤ 2, and −1 ≤ β ≤
1. Further define:

Φ(t, α) ,

{
tan

(
πα
2

)
, α 6= 1

− 2
π log(|t|), α = 1

.

Then, the characteristic function of a stable RV X , with
location parameter µ, scale (or dispersion) parameter c, char-
acteristic exponent α, and skewness parameter β, is given by:

ϕ(t;µ, c, α, β)=exp {jµt−|ct|α(1−jβsgn(t)Φ(t, α))} . (5)

In the following, we use the notation S (µ, c, α, β) to
represent a stable distribution with the parameters µ, c, α,
and β. Apart from several special cases, stable distributions
do not have closed-form PDFs. The exceptional cases are
the Gaussian distribution (α = 2), the Cauchy distribution
(α = 1), and the case of α = 1

2 with general β, which was
very recently derived in [5, Theorem 2]. Note that the Lévy
distribution is a special case of the results of [5] with β = 1.
Finally, we note that all stable distributions, apart from the
case α = 2, have infinite variance, and all stable distributions
with α ≤ 1 also have infinite mean. In fact, this statement can
be generalized to moments of order p ≤ α, see [14].

Next, we study ML and linear detection for transmission
over the DBMT channel.

III. TRANSMISSION OVER THE DBMT CHANNEL: ML
AND LINEAR DETECTION

We begin this section with the relatively simple case in
which a single information particle is released, i.e., M = 1.
For this setup, the decision rule which minimizes the proba-
bility of error, and the minimal probability of error, are given
in the following proposition:

Proposition 1. The decision rule which minimizes the proba-
bility of error when M = 1, is given by:

X̂ML(y1) =

{
0, y1 < θ

∆, y1 ≥ θ,
(6)

where θ is the unique solution, in the interval [∆,∆ + c
3 ], of

the following equation in y1:

y1(y1 −∆) log

(
y1

y1 −∆

)
=
c∆

3
, y1 > ∆ > 0. (7)

Furthermore, the probability of error of this decision rule is
given by:

Pε = 0.5

(
1− erfc

(√
c

2θ

)
+ erfc

(√
c

2(θ −∆)

))
. (8)

Proof: The proof is provided in [15].
The probability of error in molecular communications can

be reduced by transmitting multiple information particles for
each symbol [8], namely, using M > 1 particles for each
transmission.4 In fact, in [6] we showed that the capacity of
the DBMT channel scales linearly with M . Yet, in [6] we
did not provide analysis of the probability of error, nor an
efficient decoding method. In this section we first present the
ML detector for the DBMT channel, and then discuss more
practical detection approaches.

A. ML Detection for M > 1

Let y = {ym}Mm=1. The following proposition characterizes
the ML detector based on the channel output y:

Proposition 2. The decision rule which minimizes the proba-
bility of error for M ≥ 1, is given by:

4As we assume that the transmitter and the receiver are perfectly synchro-
nized, the best strategy is to simultaneously release M molecules. Releasing
the M molecules in different times can only increase the ambiguity at the
receiver and therefore increase the probability of error [8, Sec IV.C].



X̂ML(y)=

{
0,

∑M
m=1 log

(
ym−∆
ym

)
+ c∆

3
1

ym(ym−∆) >0

∆, otherwise
. (9)

Proof: A proof outline is provided in [15].
Although the above ML detector minimizes the probability

of error for equiprobable signaling, it lacks an exact per-
formance analysis and is relatively complicated to compute
in nano-scale devices; this in particular holds for the log(·)
operation. In traditional EM communication the common
approach is to apply a linear signal processing based on the
sequence y. The complexity of such a receiver is significantly
lower compared to that of the ML detector, and for an additive
white Gaussian noise (AWGN) channel this approach is known
to be optimal [16, Ch. 3.3]. In fact, even in non-Gaussian
settings such as transmission over a timing channel with drift
[8, Sec. IV.C.2], modeled by the additive IG noise (AIGN)
channel, the linear approach yields significant performance
gains compared to the transmission of a single particle (even
though it is not necessarily the optimal detector). We note that
linear techniques are favored for signal processing problems
involving processes with finite second-order moment [14, Sec.
IV].5 However, the second moment of the additive Lévy noise
is infinite.

In the next subsection we argue that when the transport
mechanism is based only on diffusion, then such a linear
receiver in fact degrades the performance compared to the
transmission of a single particle. The sub-optimality of linear
signal processing of signals corrupted by α-stable additive
noise was already observed in [9, Ch. 10.4.6], yet, to the best
of our knowledge, the analysis in the next subsection is the
first to rigorously show that linear signal processing is not only
sub-optimal, but can also degrade the performance.

B. Linear Detection for M > 1

In this subsection we consider linear detection of signals
transmitted over an additive channel corrupted by an α-stable
noise with characteristic exponent smaller than unity, namely,
we use the channel model (2), with the minor change that
Zm ∼ S (0, c, β, α), α < 1.6 Thus, the results presented in
this subsection also hold for the Lévy-distributed noise. Let
{wm}Mm=1, wm ∈R+,

∑M
m=1wm = 1 be a set of coefficients,

and consider ML detection based on YLIN,
∑M
m=1wmYm:

X̂LIN = argmax
x∈{0,∆}

fYLIN|X(yLIN|X = x). (10)

Let Pε,LIN denote the probability of error of the detector X̂LIN.
We now have the following theorem:

Theorem 1. The probability of error of the linear detector is
higher than the probability of error of the detector in (6),
namely, Pε,LIN ≥ Pε, where Pε is given in (8).

Proof: We show that given X=x, YLIN∼S (x, cLIN, α, β),
with cLIN ≥ c. Note that when X=x is given, then the Ym’s

5Note that the IG distribution considered in [8] has a finite variance.
6Timing channels with α < 1 and β 6= 1

2
were studied in [5].

are independent. Therefore, the characteristic function of YLIN,
given X = x, is given by:

ϕYLIN|X=x(t)

(a)
=

M∏
m=1

exp {jxwmt−|cwmt|α(1−jβsgn(t)Φ(t, α))}

(b)
= exp

{
jxt−

(
M∑
m=1

cwαm

)
|t|α(1−jβsgn(t)Φ(t, α))

}
(c)
= exp {jxt−|cLINt|α(1−jβsgn(t)Φ(t, α))} , (11)

where (a) follows from the fact that wm>0 and from the fact
that Φ(t, α) is independent of t, for α<1 ; (b) follows from the
fact that

∑M
m=1 wm = 1; and (c) follows by defining cLIN =

c ·
(∑M

m=1 w
α
m

) 1
α

. Therefore, given X = x, we have YLIN ∼

S (x, cLIN, α, β). Since wm ≤ 1, we have
(∑M

m=1 w
α
m

) 1
α ≥

1, and therefore cLIN ≥ c. Finally, as c is the dispersion of the
distribution, and since stable distributions are unimodal [11,
Ch. 2.7], it follows that the probability of error increases with
c. Therefore, we conclude that Pε,LIN ≥ Pε.

As the Lévy distribution is a special case of the family
S (0, c, β, α), α < 1, it follows that the linear detector
degrades the performance compared to the case of M = 1.
This is numerically demonstrated in Section V.
Remark 1. The difference between the AIGN channel (or the
AWGN channel) and the channel considered in this paper
stems from the fact that for the AIGN, (weighted) averaging
can decrease the noise variance, namely, the tails of the noise.
On the other hand, in the case of the Lévy distribution,
averaging leads to a heavier tail, and therefore to a higher
probability of error.
Remark 2. In order to implement the ML detector (9), the
receiver must wait for all particles to arrive. However, as
the Lévy distribution has heavy tails, this may result in very
long reception intervals. In fact, the average waiting time of
such a receiver will be infinite. The detector in (10) can be
implemented with shorter waiting intervals, yet, these intervals
are significantly longer then the ones required in the single-
particle detection problem.

In the next section we present a simple detector. This
detector requires a short reception interval and achieves per-
formance very close to that achieved by the ML detector.

IV. TRANSMISSION OVER THE DBMT CHANNEL FOR
M > 1: FA DETECTION

The detector proposed in this section detects the transmitted
symbol based only on the FA among the M particles, namely,
it waits for the first particle to arrive and then applies ML
detection based on this arrival. In terms of complexity, the FA
detector simply compares the first arrival to a threshold; this
is in contrast to the complicated ML detector in (9).

Let yFA , min {y1, y2, . . . , yM}. In [15] we show that the
PDF of YFA is more concentrated around the transmitted sym-
bol than the original Lévy distribution, which is reminiscent



yFA(yFA −∆)

log

(
yFA

yFA −∆

)
+

2(M − 1)

3
log

1− erfc

(√
c

2(yFA−∆)

)
1− erfc

(√
c

2yFA

)

 =

c∆

3
. (13)

of the lower variance achieved by averaging in AIGN and
AWGN channels. The FA detector is presented in the following
theorem:
Theorem 2. The decision rule which minimizes the probability
of error, based on yFA, is given by:

X̂FA(yFA) =

{
0, yFA < θM

∆, yFA ≥ θM ,
(12)

where ∆ ≤ θM ≤ θM−1, θ1 = θ, is the solution, in yFA ≥
∆ > 0, of (13) at the top of the page. Furthermore, the
probability of error of the FA detector is given by:

Pε,FA = 0.5

((
1− erfc

(√
c

2θM

))M
+1−

(
1− erfc

(√
c

2(θM −∆)

))M)
. (14)

Proof: Let FY |X(y|x) denote the CDF of ym given X .
Assumption A3) implies that given X , the channel outputs
Y1, Y2, . . . , YM are independent. Hence, using results from
order statistics we write:

FYFA|X(y|x) = 1− (Pr{Y > y|X = x})M

(a)
= 1−

(
1− erfc

(√
c

2(y − x)

))M
(15)

where (a) follows from (4). Next, to obtain the PDF of YFA
given X , we write:

fYFA|X(y|x)=
∂FYFA|X(y|x)

∂y

=M ·fY |X(y|x)·
(

1−erfc
(√

c

2(y−x)

))M−1

. (16)

The ML decision rule is now obtained by simply comparing
fYFA|X(y|x = 0) and fYFA|X(y|x = ∆). Plugging in the
density of (16), and applying some algebraic manipulations
we obtain (13).

To show that θM ≤ θM−1 we first note that by plugging (16)
into the ML decision rule, it follows that θM is the solution
of the following equation:

fY |X(yFA|x = 0)

fY |X(yFA|x = ∆)
=

1− erfc

(√
c

2(yFA−∆)

)
1− erfc

(√
c

2yFA

)

M−1

. (17)

Now, for M = 1, the RHS of (17) equals 1, and θ1 ∈ [∆,∆+
c
3 ]. Thus, the LHS of (17) is equal to 1 in this interval. An
explicit evaluation of the derivative of the LHS of (17) shows
that in this range the derivative is negative, and therefore the

LHS of (17) decreases with yFA, independently of M . On the
other hand, the RHS of (17) increases with M for all yFA≥∆.
Thus, we conclude that the solution of (17) decreases with M .

Regarding the probability of error, we first note that for
yFA < ∆, due to the causality of the arrival time, X must
be equal to 0, and therefore the probability of error is zero.
For yFA ≥ ∆ we use the fact that the constellation points are
equiprobable, and the CDF in (15) to obtain (14).

Remark 3. The FA detection framework can be directly
extended to the case of constellations with more than two
elements, i.e., L > 2. In such cases the detection will be
based on L−1 thresholds, which define the L constellation
points. Furthermore, as the conditional PDFs concentrate near
x when M increases, we conclude that by increasing M one
can support larger L for a given target probability of error
(note that when L>2, then Pr{X 6= X̂} refers to the symbol
error probability).

Remark 4. In [15] we analytically compare the ML and FA
detectors. For small to medium values of M we show that
the FA and ML detectors achieve almost the same probability
of error. Then, we use error exponent analysis to show that
for large values of M the ML detector outperforms the FA
detector. This is demonstrated in the following section.

V. NUMERICAL RESULTS

We begin our numerical evaluations with the probability of
error for the different detectors. Fig. 1 depicts the probability
of error versus different values of ∆, for M = 1, 2, 3, for
the ML, FA, and linear detectors. Throughout this section 106

trials were carried out for each ∆ point. When M = 1 all the
detectors are identical. For larger values of M , the probability
of error of the ML detector was evaluated numerically, while
the probability of error of the FA detector was calculated using
(14). For the linear detector we assumed wm = 1

M which leads
to cLIN = Mc. It can be observed that the probability of error
decreases with ∆ and with M (for the ML and FA detectors).
Moreover, as stated in Remark 4, Fig. 1 shows that the ML and
FA detectors are practically indistinguishable for small values
of M . Finally, note that the linear detector indeed degrades
the performance as M increases.

Fig. 2 depicts the probability of error versus the number
of released particles M , for the ML and FA detectors, ∆ =
0.2, 0.5, and c = 2. Here, 106 trials were carried out for each
M point. It can be observed that for small values of M , as
indicated by Fig. 1, the FA and ML are indistinguishable. On
the other hand, when M increases, the superiority of the ML
detector is revealed, e.g., M ≈ 50. This further supports the
results reported in Remark 4.
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Fig. 1: Pε vs. ∆, for c = 1 and M = 1, 2, 3.
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Fig. 2: Pε vs. M , for c = 2 and ∆ = 0.2, 0.5.
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Fig. 3: Pε,s vs. ∆, for c= 1 and (M,L) pairs: (25, 8), (50, 16),
(100, 32).

Finally, Fig. 3 demonstrates that for a given ∆ and L, by
using M large enough, one can theoretically achieve any target
probability of error. For instance, Fig. 3 shows that a symbol
probability of error of 10−3 can be achieved with ∆ ≈ 7s, for
different pairs of L and M . We conclude that by using large
values of M , the transmitter can send short messages using a
single-shot transmission with relatively small values of ∆.

VI. CONCLUSIONS

We studied communication over DBMT channels assuming
that multiple information particles are simultaneously released
at each transmission. We first derived the ML detector and
argued that it is impractical for nano-scale devices due to
its high complexity. Then, we considered the linear detection
framework, and showed that when the noise is stable with
characteristic exponent smaller then unity, then linear process-
ing increases the noise dispersion, which results in a higher
probability of error. To take advantage of the multiple trans-
mitted particles, we then derived the FA detector and showed
that for low to medium values of M it achieves a probability
of error very close to that of the ML detector. On the other
hand, since the first arrival is not a sufficient statistic for the
detection problem, when M is large the ML detector strictly
outperforms the FA detector. Our analysis indicates that the FA
detector has a nice concentration property of the conditional
densities, which implies that by using M large enough one can
use large constellations, thus, conveying several bits in each
transmission. This property is very attractive for molecular

nano-scale sensors that are required to send a limited number
of bits and then remain silent for a long period of time.
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